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BY 
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ABSTRACT 

The object of this paper is to show that the Levi-Lax condition is necessary and 
sufficient for the Cauchy problem to be well-posed. 

Introduction 

We deal in this paper with conditions on partial differential equations with 

characteristics of constant multiplicity under which the Cauchy problem is well 

posed. P.D. Lax [9] and S. Mizohata [12] showed that the Cauchy problem 

cannot be well-posed unless the characteristics are all real. If, in addition, these 

roots are simple (their multiplicity is one), the well-posedness of the Cauchy 

problem was proved by I.G. Petrowsky [15], J. Leray [I0] and L. G~rding [3]. 

For equations in two independent variables having characteristics of multiplicity 

higher than one, the Cauchy problem was proved to be well-posed under a 

condition on the lower-order terms by E.E. Levi [11] and A. Lax [8]. This 

condition has come to be known as the Levi-Lax condition. It was extended for 

equations having several independent variables, but whose characteristics are of 

multiplicity at most two, by M. Yamaguti [18]. Later, S. Mizohata and and Y. 

Ohya [13], [14] formulated an alternative condition similar in form to the 

Levi-Lax condition (also for several variables and multiplicity at most two) and 

showed the condition to be necessary as well as sufficient in their restricted case. 

H. Flaschka and G. Strang [2] formulated still another condition without any 

restrictions on the size of the multiplicity or the number of variables and showed 
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it to be necessary. J. Chazarain [1] then showed that the Flaschka-Strang form of 

the condition was sufficient as well. 

In this paper we will give first a new proof of the theorem proved originally by 

Petrowsky for what are now called strictly hyperbolic operators. Next, we will 

extend and prove sufficient the Levi-Lax condition for equations unrestricted 

either in the number of independent variables or in the size of the multiplicity of 

the characteristics. In doing so, we will show how H6rmander 's  domination 

relation (namely that P, the operator under consideration, is weaker than P,~, its 

principal part: see L. H6rmander [4]) extends for operators having variable 

coefficients. We will also formulate an extension of the Mizohata-Ohya condi- 

tion to equations having characteristics of arbitrary multiplicity. We will then 

show the equivalence of all of these conditions (the Levi-Lax condition, the 

generalized Mizohata-Ohya condition and the Flaschka-Strang condition), thus 

proving, among other things, that the Levi-Lax condition is necessary as well as 

sufficient in order for the Cauchy problem to be well-posed. 

1. S tatement  ot prob lem and notat ion  

First, recall the problem. Let 

e(x,t, Dx, D,) = Pm(X,t, Dx, D,)+ Pm-I(x,t,D~,D,)+"" 

be a linear partial differential operator of order m and the Pi are homogeneous 

of order i in (x, t): x = (xl, �9 �9 ", x,) • R", t E R 1. 

Let Pm (x, t, s r, ~-) be the leading symbol of P where s r = (sr~, -. ., s ~ R" and 

r E R  ~. 

Assume the hyperplane t = 0 is non-characteristic at the origin with respect to 

P;  i.e., P,,(0, 0, 0, 1)~ 0. The Cauchy problem is to find a solution v of Pv = f in 

a neighborhood of the origin with given (say homogeneous) Cauchy data on the 

plane 

t=O:D~vJ,=o=O, j=O, . . . ,m  -1 .  

The Cauchy problem is said to be well-posed (in the sense of Hadamard) if a 

solution exists, is unique, and depends smoothly on the initial data and the 

function f. 

DEFIr~XTXON. We will call an operator P hyperbolic if its associated C | 

Cauchy problem is well-posed. 

Since t = 0 is non-characteristic at the origin with respect to P we may assume 

that the coefficient of D7  in Pm is 1. 
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For an n-tuple c~ = (~1,'" ", c~n) of non-negative integers, we write 

x ~ = x 7  . . . .  x~", 

(§ 0 
Ox = ". . ,  , O, = a t '  

1 1 
D,  = _ a,, D, = - c9,. 

1 1 

D '  = I~__D ~. 

L ~ denotes the class of homogeneous pseudo-differential operators of order 3, in 

the x-variables and S ~ is its corresponding symbol space. See J.J. K o h n  and L. 

Nirenberg [7] for more details. L'x,, is the class of homogeneous operators 

differential in t and pseudo-differential in x of order 3' in (x, t). Sx;, is its symbol 

space. (u, v) is the L2 scalar product of u and v with respect to the x-variables. 

[[ u [[ is the corresponding L2 norm of u. Hs is the Hilbert space with norm 

II u(., t)L defined by 

Ilu III = f (1 + t t=) �9 I a(r162 

where ti is the Fourier transform of u(x ,  t) with respect to the x-variable; 

[A, U ] = A B  - B A .  

Finally, C will be used to denote any constant and may be varied from line to 

line. 

2. Condit ions  and statements  of theorems 

The first condition restricts the type of characteristics we may allow. 

PROPOSITION 2.1. (P.D. Lax [9], S. Mizohata [12]). Let  t = 0  be non-  

characteristic with respect to the operator P. I f  the Cauchy  problem is well-posed, 

then the roots �9 o f  P,, (x, t, ~, ~') = 0 are all real. 

PROOF. See V. Ya. Ivrii and V. M. Petkov [6] or L. H6rmander  [5] for a 

particularly simple proof. 

If the characteristics of P are, in addition, simple (the multiplicity is one) the 

Cauchy problem is well-posed. 



60 M. Z E M A N  Israel J. Math.  

THEOREM 1 (I. G. Pe t rowsky [15]). Suppose t = 0 is non-characteristic at the 
origin with respect to P. Suppose the characteristics are simple and real. Then the 
Cauchy problem is well-posed. 

We will give a new proof  of T h e o r e m  1 later. It will become  useful in proving 

results for  equat ions  with characterist ics having multiplicities of higher  order .  

A m o n g  partial  differential equat ions  with characterist ics of higher  multiplic- 

ity, we will consider  only those for  which the multiplicity is constant .  This means  

that if ~'~ and z2 are distinct zeros of Pm (x, t, ~:, z)  = 0 on I ~: I = 1, then I ~'2 - ~'21 => e 

where  e is a fixed positive n u m b e r  independen t  of x, t and ~:. 

REMARK. Results for  equat ions  whose characterist ics have variable multiplic- 

ity have been given by H 6 r m a n d e r  [5], Ivrii and Pe tkov  [6] and Z e m a n  [19]. 

If P has characterist ics of constant  multiplicity, we can write P ,  (x, t, ~, r )  in 

the form 

P 

I-I 0 -  - t, 
i = l  

where  IA , (x , t , ~ ) -A j  (x,t,r >- e 
{(x, t): Ixl<-_f, O<-_t<= T}. 

Let  ~ = D, - )t~(x, t, Dx), where  

for  ( x , t ) ~  and Ir and where  f~ = 

{ 1 ] " / 5 (  
A,(x,t, Dx)u(x, t )= \~---~] j e~%(x,t, Oa(#,t)d#. 

Suppose  Pm is the leading part  of l-Ira = I/~=10~'. Rewri te  P =Pm + Pm-~ + �9 �9 �9 as 

follows: P = l-Ira + P '_~ + P ' - 2  + �9 �9 where  Pm-j' is an ope ra to r  of o rde r  m - j 

(not necessarily homogeneous) .  We will now state the condi t ion on the lower 

o rde r  terms P~'_j which will turn out  to be both  necessary and sufficient for  

hyperbolici ty.  

Condition (L) 

P'_j(x,t, Dx, D,)=Mj(x,t ,  Dx, D,)IZI 0~ ',-jJ, j = 1 , 2 , . . . , r -  l ,  
i = l  

for  some MjELxOI>,, where  ( j )=m-j -~ ,~=~[r~- j] ,  and where  [ r , - j ] =  

max {r, - j, 0}. r = max r~. 

REMARK 1. At  the points r = Aj (x, t, ~:), rj _-> 2, P'-l(x, t, ~, ~') is equal  to the 

subprincipal  symbol  of P given by 
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P~_,(x, t, ~, , )  = Pm-,(x, t, ~, , )  - ~ , : ~  ox-S o~ e~ + -~ ~ P~ , 

which is invariant at these points. 

REMARK 2. We shall now describe a way to determine whether  an opera tor  

P satisfies condit ion (L). Let P =Pm + Pm-t + Pm-2 + ' "  ". Replacing P ,  by rl,, 

we introduce an error term which we have to account for. Hence  P = 

H,. + (Pro - l-I,. + P.,_~) + - -  .. Let  

['m-,(x,t,D~,D,)= P,~(x,t,D~,D,)-rI,, + Pm_,(x,t,D~,D,). 

If condition (L) is satisfied, we can factor/~m-~(x, t, ~, r ) ,  the principal symbol of 

/5,,_~, as follows: 

/5,~_1(x, t, s ~, r )  = M1 (x, t, ~, r )  leI ( r  - A, (x, t, s~)) t'-lj. 

Finally, 

P 

P'~-t(x, t, Ox, D,) = M~(x, t, Dx, D~) I-I (D, - A, (x, t, Dx)) 1',-1j. 
i = 1  

More generally, 

P,~_j(x,t, Dx, D,)= (P~_~§ P'_j§ + P~_j)(x,t, Dx, D,). 

If condition (I~,) is satisfied we can factor/sm_j (x, t, ~, ~-), the principal symbol of 

/Sin_ i, as follows: 

P,~_,(x, t, r r) = Mr(x, t, ~, r) IeI (r - x,(x, t, r 
i = 1  

Then 

P'_j (x,t,D~,D,)= Mj(x,t, Dx, D,)Iel ( D , -  A,(x, t, D~)) tr'-jj. 
i = l  

If the above operat ion fails at any step, then condition (L) is not satisfied. 

For  partial differential equat ions having multiple characteristics, we have the 

following theorem: 

THEOREM 2. Suppose t = 0 is non-characteristic at the origin with respect to P 
(as described above). Then the Cauchy problem [or operator P is well-posed if and 
only if condition (L) holds. 

REMARK. Condit ion (L) was first formulated by E. E. Levi [11] and then 

rediscovered by A. Lax [8]. Both dealt with equations in two independent  
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variables. In that case A,(x, t, Dx)= [~(x, t)Dx for  some real smooth  funct ion ~. 

Similarly Mj(x,t,  Dx, D,) is some partial differential ope ra to r  in x and t. 

Otherwise  condi t ion (L) as given here  is precisely the same as that of  A.  Lax. 

3. Technical lemmas 

Before  we prove T h e o r e m s  1 and 2, we need  some prel iminary lemmas.  

LEMMA 3.1. If  S = a7'07 . . . .  aT' is of order m (i.e. E ~  m, = m)  and g is a 

permutation of s, then 

s - g = h,,_~(x,t, Dx, D,)+ h, ,_z(x , t ,D~,D,)+" ", 

where hm_j(x, t, D,, D,) satisfies condition (L) (by which we mean that it is of the 

same form as P'_j in condition (L)). 

PROOF. It suffices to carry out  the p roof  for  the special pe rmuta t ion  

s = a t , . .  . . . .  a r , - ' a , a ~ a ? , - '  a~"~, 

g = aT, . -  �9 a t ' - '  aja, a ? , - ' . . ,  a~'~., 

s - ~ = a7 . . . .  a r , - ' [a , ,  aj] a?,- '  a';,. 

N o w  [a,,a~] = b~(x, t ,D.)+N1, where  b E L~ and N ~ E L  ~ Hence ,  

s - g = a~' . . . .  a~ ',-~ b~ o~ ' , -~ . . .  aT*+ a7 . . . .  a~ ',-~ N~ c1~ ' , -~ . . .  a7 ~. 

W e  will now show this is equal  to  

tr = b~ aT' . . . .  a7  ,-~ a?,  -~. �9 �9 0~'~+ T, 

where  T represents  the lower  o rder  terms, all of the same form as h.,_j. 

Now [a,, b~] = b2+N2, where  b2EL'~ and N 2 E L  ~ Hence ,  

= - .,-2 b a T , j - ,  . . . a ; , ,  s - ~  07 . . . .  aT, ~ b , a , a ? , - ' . . . a ' ~ + a 7  . . . .  a 

+ a';' . . . .  a r , - ' N ,  a ? , - ' . . ,  a T , +  a7 . . . .  a ? , - ' N ~ a ? , - ' . . ,  a7 ~. 

These  terms are of the same form as before  except that  the first term b~ has 

m o v e d  leftward and the second  and four th  terms contain one  less a, than s - g 

did before,  and so after  a n u m b e r  of  steps it is clear that  

s - ~ = b,a? . . . .  a ? ' - ' a T , - ' . . ,  a ' ~ +  N~a? . . . .  a ? , - ' a T , - ' . . ,  a '~ 

+ b2 a7 . . . .  a? '-~ o F , - ' . . ,  a ' ~ , + . . .  

= hm-, + h,-2+ " "', 
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where h,,_~ is the first term and h,,_2 is the sum of the second and third terms, and 

so on. It is evident that the h,,_j are of the form required. 

REMARK. This lemma shows that condition (L) is invariant under an arbitrary 

permutation of the 0~. 

LZMMA 3.2. Suppose I A,(x, t, ~:)-  A2(x, t, ~)l > e for some e > O, for I ~ I = 1. 

Then for any operator g ( x , t ,D , ,D , )EL~ , , ,  we can find cz, c2 ,N E L ~ such that 

c~O~ + c2O2= g ( x , t , D , , D , ) +  N ( x , t , D , ) .  

PROOF. g is of the form g ( x , t , D ~ , D , ) = a ( x , t , D , ) D , - b ( x , t , D ~ ) ,  where 

a ~ L ~ and b E L~. Hence, to find ca and c2, we have to solve the following 

system of pseudo-differential equations (N will turn out to be some lower order 

term which appears when we solve the system): 

c~(D, - Al(X, t, D . ) )  + c2(D, - A2(x, t, D~)) = aD, - b. 

This implies that 

and 

c,(x, t, Dx) + c2(x, t, D~) = a(x, t, Dx) 

c,(x, t, D , ) a , ( x ,  t, Dx) + c,(x, t, D,)~2(x,  t, D~) = b(x, t, D,) .  

Using elliptic theory, we can solve this system for cl and c2, modulo lower order 

terms which belong to L~ since the matrix 

~) a2(x, t, ~) ,  

is non-singular for [ ~: I = 1; this completes the proof. 

PROPOSmON 3.3. Suppose ,~i(x, t, ~) is real for (x, t, ~:) ~ II • R"\{0}, where 

f l = { ( x , t ) :  Ixl<-f ,  O<- t<-r} .  For every real s, there exists a constant C(s )  

independent of  u such that 

(3.1) Ilu(",  t)ll, < C(s)Tlla,u(', t)[I, 

if u(x,O) = O, where C(s )  T <  1 if T is small enough. 

PROOF. 

d 
(3.2) ~ (u, u), = 2 Re  (u,, u),. 
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Let c~ju = D,u - A; (x, t, Dx)u = v. Then D,u = v + Au. Hence u, = iv + iAu, since 

D, = (1 / i ) d /d r  Substituting into (3.2), we have 

d 
-d-~ (u, u), = 2 Re( iv  + iAu, u)~ 

= 2 Re (iv, u), + 2 Re (iAu, u), ;  

2 Re(iAu, u), = (i[A - A *}u, u ) ,  where A * is the formal adjoint of A with respect 

to the inner product. Since the symbol of A is real, A differs from A* by an 

operator  of order zero. Hence 

This implies that 

( i I ,  - **)u, u), =< c ,  llu I1~. 

d 
~- (u, u), =< 2 Re (iv, u)~ + C 11 u 112,. 

Applying Cauchy's inequality, 

2 Re (iv, u)s <= C II u lie II v lie. 

Hence 

(3.3) 
d 

~S (u, u ) ,  - c II u It] + c II v II, II u It,. 

Multiplying (3.3) by ( T -  t) and integrating, we have 

f/ [ff (3.4) II u ll~dt <= C Z  II u II~dt + C T  II " 11~ dt II v I1~ at 
) 

from which it follows that for T small, II u It, <- C T  II v tl,, where C is a function of 

s alone. Hence, II u 11, -< C Z  II a,u I1,, where CT < 1 for T small enough. 

4. Proof of Theorem 1 

The basic step in the proof of Theorem 1 is proving the following energy 

estimate. 

PROPOSmO~ 4.1. Let the hypotheses o/  Theorem 1 hold. Then there is a 

constant C independent of u such that [or T and r sufficiently small, we have 

1 ~ 11Dan]ls<=cIIeu115, 
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for u ~ Co(f~), 

j = 0 , . . . , m  - 1 .  

where f~={(x , t ) : lx l<=r ,  O<=t<=T}, if O{u(x,t)[,~o=O, for 

REMARK. Proposition 4.1 remains true if P, which is a partial differential 

operator here (as in Theorem 1), is replaced by an operator, differential in t and 

pseudodifferential in x. It is with P in this form that Proposition 4.1 is used later 

in proving the sufficiency part of Theorem 2. 

Before we prove Proposition 4.1, we first present two lemmas which will help 

simplify its proof. 

LEMMA. 4.2. Let s, s' be two real numbers such that s' < s, - n/2 <= s. Then to 

every e > 0 there is a number *l > 0 such that if the diameter of a compact set K is 

<= ~1, we have for all u ~ H, (K) ,  II u I1,,--< e II u IIs. 

PROOF. See F. Tr6ves (theorem 0.41 in [17]). 

COROLLARY 4.3. For r sufficiently small, it suffices to prove in Proposition 4.1 

that 

1 
-~ II O ' - * u  Ils ~ < c II Pu ]Is. 

LEMMA. 4.4. Let R(x , t ,  Dx, D,) be an operator of order less than m. If 

Proposition 4.1 holds for P, it will still be true if P is replaced by P + R. 

PROOF. Since 

I[ eu II, = II (e § R)u II, § II Ru tl, 

then 

~[[ (P+R)uI[ ,+C E [[D~ulls, 

1 E ]]D"u IIs ~ CII(P § R)u I[s + C E EID~u II,. (4.1) -T I,l--<m -, J~l~,,-, 

Since T < 1/C for T sufficiently small, we can absorb the second term of the 

right-hand side (r.h.s.) of (4.1) into the left-hand side (l.h.s.) and get 

1 • [[O~ull<=Cll(p+R)uii,. 
T ]atOm-1 

PROOF OF PROPOSITION 4.1. Invoking Corollary 4.3 and Lemma 4.4, it suffices 

to prove the following: 



66 

(4.2) 

where I - I , .  = cgi �9 �9 �9 0 , . ,  

M. Z E M A N  Israel J. Math. 

1 ~11 D'-lu I[, --< c IlI]m I1,, 

O,=D,-&(x , t ,D , ) ,  ~nd I)t,(x,t,~)-Aj(x,t,~)l>=e. If 
m = 1, (4.2) holds because of Proposition 3.3. 

Now assume the theorem is true for m = 1. We will prove that it is then true 

for m + 1. We have, by the induction hypothesis, 

(4.3) 

and 

(4.4) 

-~11Dm-'(0m+,.)l l. < CI l (a ,  " " " O.~)(am§ 

~ 1 1 D ' - ' ( a . . ) I I .  --< C I l ( a , ' ' '  a,.-,a,.+,)(a..)ll, 

since the operator c1~.., a,._,a,,+, is of the same form as a,. �9 �9 a,.. Now, 

9 1  ~ ~ ~ a m + l  ~-  9 ,  " ~ " a m - ,  O r a + l  a m  -~ h, 

where h E LT.,. Combining this with (4.4) we have 

- ~ 1 1 D ' - ' ( a - . ) I I .  --< II a , . . .  a . + , .  - h .  II. 

(4.5) =< C II o , . . .  am+,. II, + cl l  D ' .  I1.. 

Adding (4.3) and (4.5) yields 

1 (llD,._i(O,.u)tt, + ii D. ._ , (o. .+ , . ) I I . )__ < clio,.., or.§ II. + C I I D ' .  11.- (4.6) -~ 

We will now show that (4.6) implies the following estimate: 

(4.7) 1 (ll Or, (D ' - ' , , ) I I ,  + II am +,(D m-,u )11,)<= C It O , " "  O,.+,,, II, + C fl D m u f f,. 

Indeed, by Proposition 3.3, 

1 
(4.8) -~ II D ' - ' u  IIs <= CIlO,D"-'u I1,. 

Since [D "-1, at] is an operator of order m - 1 ,  we can show as before that 

(4.9) ~llO"-'u II, --< CllD"-'O,u I1,. 

Hence combining (4.8) and (4.9) we have 
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2CIID'-'a,u IIs--> Clla,D'-lu II.- c211D'-lu II. +-~11D'-lu II., 

for some C2. This implies that 

2 C II D "-10, u I1~ >= Clio, D " - l  u II- 

and (4.7) follows easily. (4.7) implies that 

~l l (aa.  + b&.+,)O"-lu II. --< clio1.., a.+,u I1,, 

for any a, b E L ~ After  applying Lemma 3.2, the following estimate follows 

easily: 

I II Bran II, <-- 1 II D (  Dm-lu  )ll. <= C I101... Ora+l u II$. 

Hence (4.2) holds for all m and the proof is complete. 

PROOF OF THEORE~I 1. Proving that the Cauchy problem is well-posed by 

utilizing an energy estimate is standard. Among other  places, a proof can be 

found in Zeman [19]. 

5. Sufficiency of condition (L) 

We will show that condition (L) is su~cient  for the Cauchy problem to be 

well-posed by proving an energy estimate. That  the Cauchy problem is then 

well-posed follows as in the proof of Theorem I. 

PROPOSITION 3. Suppose t = 0 is non-characteristic with respect to P, a partial 

differential operator with characteristics of constant multiplicity. Suppose condition 

(L) holds. Then there is a constant C independent of u such that for T and 

sufficiently small, we have 

(5.1) Z rr D~ It. -<- cfieu It, 

for u E Co(~),  where 1"1 = {(x, t ): [ x I <= r, 0 <= t <= T}, if D~u (x, t)1,=o = 0, for ] = 

0,.  �9 m - 1. r represents here the maximum multiplicity of the characteristics of P. 

PROOF. Recall that l-lm=II~=l, 0 " , O ~ = D , - A , ( x , t , D ~ ) ,  r = m a x r ,  and 

E,Pz,r~ = m After  a permutation,  if necessary, we may assume that rl < r2 = �9 �9 = 

r e . Let 

p-k rk+1_rk 
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Then  I I~ is a p roduc t  of  r opera tors ,  each of the fo rm 1-I0, H e n c e  I I ' =  

P.,IP,:" �9 �9 P,,,., where  each P,,,, is of  the  fo rm 110, of o rde r  m~, with m~ + ms + �9 �9 �9 + 

rn, = m. M o r e  specifically, if rp = r~_~ . . . . .  r~§ > r,, then,  for  instance,  Pro, = 
p--$+l l - I~  ~_~§ No te  that  each Pro, satisfies the  condi t ions  of  T h e o r e m  1. H e n c e  we 

can apply  Propos i t ion  4.1 to each of the  P , , :  

(5.2) 

This implies that  

111 o - , l u  It, --< c II P, ,u II,. 

1 -~ If D' , - 'P , , ,2 . .  . P,n,U If., ~ C tt P,,1"" " P , u  tL,. 

W e  will now c o m m u t e  Din1-1 with P.~: 

D " 1 - 1 p ' 2 P , , ~ , .  . . V, , , .  = P,.,,~. D ' I - " p , , , ~ .  . . V, , , ,  + [ D . , , - 1 ,  V,, ,2] V , , , 3 . .  . V,, , . ,  

where  [D ~'1-1, Pro2] = q, an o p e r a t o r  of  o rder  ml  + m 2 - 2 .  App ly ing  Propos i t ion  

4.1 again,  we have  

111 D .,1+'~-~ em~. . . e , , u  IIs <= C II P-~ ( D " - I P , , ~ .  . . P,.,u )ll,. 

This  implies  that  

1 It O "1§ 3. . P . ,u  I[, C II D P,,,:P,,,3"'" P,,,u - qP,, ,~.. .  P,.,u II, - -  , < . , 1 - 1  

T = 

(5.3) _-< C It D - l - I p , = . . .  Pm,u 41~ + C II O - , §  P , , u  II~- 

Since 1 / T  > C for  T sufficiently small,  we can absorb  the second t e rm  of the  

r.h.s, of  (5.3) into the  l.h.s, and  we have  

-~11 -1-1 D ral+m2-2pm3"'" P,~,U II~ <= C [[ O P,,,2P,,,3''" P, ,U I1~" 

This  implies  that  

I[ D " , + ' ~ - 2 P ,  . . . P,,,,u II, <= C,  D"I - 'P , ,u . .  . P , , u  I[s 

(5.4) <= C II P . , , " "  e., ,u I1~. 

W e  keep  going in this manner ,  peel ing off the Pro, one  by one  until we exhaust  

t hem and get 
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n JI (5.5) D " ,  . . . . . .  , - '  er,,," <---- CIIn 'U IIs, 
j = l  i = j + l  s 

where  the o rde r  of the ope ra to r  in the l.h.s, of (5.5) is equal  to m 1 + �9 �9 �9 + mj - j + 

(mj§ " . ' +  m , ) =  m - j .  Set t~ = m l + . . . +  m j - j .  Then  (5.5) becomes  

(5.6) 0 5  P,,,,,u -- C I l r I 'u  lb. 
j = l  i = j + l  

We will show that (5.6) implies that  

t'-'lu c I I n ' u  lb. (5.7) O'~ a < 
j = l  s 

Before  we do this, we will first show how Proposi t ion 5.1 follows. By L e m m a  3.1, 

1 1 " =  11,, + g,,,,-l + g,,,-2 + " " ", 

where  g,~_j satisfies condi t ion (L). Hence ,  

e = 11- + ( e - _ ,  - gin-,) + ( e ' _ 2 -  g,_2) + - - . ,  

where  P ' _ , -  g~,_, satisfies condit ion (L). Thus  (5.7) implies that 

D'J ieI ol',-Jlu 
j = l  i = l  

(5.8) m 

<-- cIIeu II, + c •  II(P'- ,--gr. ,- , )U IIs. 

Since by condit ion (L), P ' - ,  - g,,-~ is of the same form as the ope ra to r  in the 

l.h.s, of  (5.8), we can absorb the second te rm of the r.h.s, of  (5.8) into the l.h.s. 

and get 

(5.9) ro,,  ,,u l < ,, 
When  j = r, D'J II~1 al"-Jlu = D " - ' u ,  and (5.9) yields 

cll. ,  

So, what is left is to show how (5.7) follows f rom (5.6). To  prove  (5.7) it suffices to 

show that 

for  0 = < / - < r - 1 .  
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We prove (5.10)~ by a backwards induction on I. First, the same argument used 

to prove (5.6) shows that 

(5.11) ,=,+,~ II D5 I-I Pmu, <-_ C ( ~ }  liD" ]'-I P,,,u 
II i = } + l  XJt / i ~ l + l  s' 

for each l, 0 =  < I =< �9 - 1. If l = �9 - 1, (5.11) becomes 

II D "-'u IIs <= C U O "-'P,,.u I1,, 

which is (5.10),_1. Now suppose (5.10)~ is true; we will show that (5.10)~_1 is also 

true. (5.11) implies that 

(~)'l~ II (~)"tl n II (5.12) D" I~ P~,,u <= C D"-' P=,u 
I! i = t + l  s i= l  s" 

It can be seen easily that we can rearrange the 8, in I/~=~§ to get, modulo 

lower order  terms, I/~=~ a[ ",-~l. Thus, 

[Io~ 0,-,ull I1o ~ ~..+ ~,ull: 
are the lower order  terms which arise from the rearrangement.  where M~u 

Hence 

(5.13) 

By the induction hypothesis, we have 

1 J 

Adding (5.13) and (5.14) we then have 

(5.15) + C(1) 'II M, u L. 

Comparing this with (5.12), we see that 

/lt'lr ~ ~ ,,ulfs~ ctl/'ll~ ~, ~-.rl~ 
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which is (5.10),-1. Hence (5.10), is true for all l and the proof is complete. 

RE~ARK. Examining estimate (5.9) 

condition (L), 

(5.16) ~, ( 1 ) ' t l P ' - j u  II, <- CIIII ,u [],. 

Now, (5.16) implies that 

more closely, we see that under 

where e is as small as we like if we take T small enough. On the other hand, 

since (5.17) leads to the well-posedness of the Cauchy problem for operator P, 

once we show that condition (L) is necessary for the Cauchy problem to be 

well-posed, we will arrive at the conclusion that estimate (5.17) holds only under 

condition (L). We thus have another criterion for hyperbolicity, namely, that P is 

hyperbolic if and only if it is dominated by its "modified" principal part II,, in 

the sense of (5.17). This generalizes the domination condition formulated by 

H6rmander for operators with constant coefficients. (See H6rmander [4], 

theorem 5.58.) Related results were presented by L. Svensson [16]. 

6. Necessity of condition (L) 

Rather than proving directly that condition (L) is necessary for the Cauchy 

problem to be well-posed, we will show instead that condition (L) is equivalent 

to another condition originally formulated by H. Flaschka and G. Strang [2] 

which they showed to be necessary. In the process, we will formulate another 

condition which is a generalization of a condition proved by S. Mizohata and Y. 

Ohya [13], [14] to be both necessary and sufficient for hyperbolicity in the 

restricted case where the multiplicity of the characteristics is at most two. We 

will show the equivalence of all three conditions. 

First we need some preliminary steps. Denote by c~,, c~ = D , - ~ , ( x , t , D ~ ) ,  
1 =<i= < m, where ~, E L lx is arbitrary, c~0 =-I. We have the following lemma, 

which shows how the c~ can be utilized as directional derivatives. 

LEMMA 6.I. (a). For j >-0 there exist a , ( x , t ,D~)~L~  such that 

a-jcg"j_,. . . a , =  ' ~  a,(x,t, Ox)O~-'+ T,, 
i = O  

E,~0c,(x, t, Dx )D~-'-', order where T1 represents the lower order terms; i.e. TI = j-z 
C~ = < i. 

(5.17) liP'-,, tl, IIn-. I1.. 
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(b) Conversely, there exist b, (x, t, Dx) ~ L ~ such that 

O~ = 2 b,(x,t ,  D x ) ~ - , O , - H . ' . 5 o  + 7"2, 
i~O 

where T2 = j-1 . .  Y , . od , ( x , t ,  Dx)Oi-,-10i-,-2.  &, order d+ <=i. 

COROLLARY 6.2. For every operator G E L ~.,, there exists ci (x, t, Dx) ~ L ~ such 

that 

k 

G = Y. + T, 
i=O 

/or some operator T E L l . ?  1. (More precisely, T has the form T =  

2,~2d e, (x, t, D~)gk-,- lg~-,-~ �9 �9 �9 00, order e, <= i). 

PROOF. L e m m a  6.1 is p r o v e d  eas i ly  by  induc t ion  on ]. I ts  p r o o f  as well  as tha t  

of  C o r o l l a r y  6.2 are  left  to the  reader .  

W e  are  now ready  to s ta te  the  cond i t i on  which will gene ra l i ze  tha t  f o r m u l a t e d  

by M i z o h a t a  and  Ohya .  Reca l l  tha t  o u r  o p e r a t o r  P is of  the  fo rm 

P = 1 7 , , + P ' _ t + P , , _ 2 '  + . . - ,  whe re  H m = I ~ d [ '  
i = l  

A s  in the  p r o o f  of  P ropos i t i on  3, we cons ide r  the  o p e r a t o r  

= II2 

II,~ = Pm,P,,~'. �9 I'm., where  each P,,, is of  the  fo rm II 0, of  o r d e r  m,, r = max r~ = 

r r N o t e  that  in pa r t i cu l a r  m,  = p. 

W e  now i n t r o d u c e  the  fo l lowing o p e r a t o r s  which will serve  as a basis  for  the  

l ower  o r d e r  t e rms  we al low: 

= a ' -  0e0,_, ,  . . .  A0 ~ 1, A, k =  Op, 2 - -  

" "  = A . . . .  1~--- P.,,+,O~ 

k __ k 
A . . . . .  2 - -  P m k + , O p O p - 1 ,  " ,  �9 . A . . . . . . . . .  - P~,,+,P, .... . . .  

k 
A . . . . . .  k . . . . . . . . .  = P n . k + l e r m . . 2 " ' P , . , ,  ' ' ' ,  

k A . . . . . . . . . . . . . . . . . .  ~ = P .~+ ,P  . . . .  " ' "  Pm,Pm~, " " " , 

k k _ A  k 
m . . . .  ~ =P,.k+,'"e,..'"Pm+, A m  - p  - -  mk+l+...+ePtr+rt%+rak--l+'..-Fm2 

= A . . . .  0~, ", A , . -  i -  A . . . .  &O~-t '"  �9 O~-j+~. 



VOI. 31, 1978 L E V I - L A X  C O N D I T I O N  73 

C,,_k_s E L x such that  By Corol lary  6.2, there  exist ope ra to r s  k m-,-s 

r a - k  

P , - k ( x , t ,  Dx, D,)  ~ * t A k = �9 - ' = C,,-6_jk(x, , D , )  ,~, k 1,2," . ,r  1. 
Jk =0 

W e  are now ready to fo rmula t e  the condi t ion:  

Condition (M) 

k = 1 , - - . , r -  1; 
k - - 0  

C m - k - S k  = , 

jk = 0 , 1 , . . - , i n k + l + . . . +  m , -  1. 

EXAMPLE. If  the multiplicity of  the character is t ics  is at most  two, r = 2. 

H e n c e  under  condi t ion (M) we need  only put  a restr ict ion on P ' - I .  Now suppose  

II, ,  = l-Is%~.~ 0, II;=10], as in the case cons idered  by Mizoha ta  and O h y a  [13], [14]. 

Then  by our  nota t ion,  

I I "  = (0,O,_,- �9 �9 a,&~_,a ,_ ,_ , - .  �9 O,+l)(d,&-, ."  a l )= P,,P,.=, 

w h e r e  m l  = m - s and  m2 = s. T h e  basis for  P ' _ ,  is: 

A~=I, A]=a~, &'=a,a~_,, .-., A'~=a,-..a,, 

A ' , + ,  = a , a , _ ,  �9 �9 �9 a , a , ,  . . . ,  A ~ _ ,  = a ,  �9 �9 �9 a , a ,  �9 �9 �9 a , a = _ ,  �9 �9 �9 a,§ 

Then  by Corol la ry  6.2, there  exist C~-i- ,  ~ L~ '-i-~ such that  

m - I  

P'_ , (x ,  t, D=, D,)  = ~'~ C~- , - ,  (x, T, D,)A}. 
l=O 

Condi t ion  (M) then b e c o m e s  

(6.1) C~_j_,(x,t ,  Dx)==-O, j = 0 , . . . , s -  1. 

Since in this case there  is no condi t ion on the te rms  of o rder  lower  than m - 1, 

(6.1) can be  w e a k e n e d  to C~_j-l(x ,  t, ~) =- 0 for  j = 0 , - . . ,  s - 1. This  is precisely 

the condi t ion fo rmu la t ed  by Mizoha ta  and Ohya .  

Finally, let us recount  the  condi t ion first p resen ted  by H.  F laschka  and G. 

Strang [2], which they p roved  to be  necessary  for  the Cauchy  p r o b l e m  to be  

wel l -posed:  

Condition (F). If ~p is character is t ic  with respect  to a root  A, of  multiplici ty N, 

i.e. if ~0, = 3.,(x, t, gradx~),  and if f ( x , t ) ~  C | then 

P ( f e ' ~ ) = O ( p = - N ) ,  as p---~oo. 
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We then have the following: 

THEOREM 4. The following are equivalent: 
(1) Condition (M), 

(2) Condition (L), 

(3) Condition (F). 

COROLLARY 6.3. Condition (L) is necessary for the Cauchy problem to be 

well-posed. 

REMARK 1. Combining Proposition 3 and Corollary 6.3, the proof of 

Theorem 2 is completed. 

REMARK 2. Theorem 4, besides showing the necessity of condition (L) for 

hyperbolicity, also proves that condition (F) is sufficient. This has been proved 

earlier in a more direct manner by J. Chazarain [1]. In addition, it proves both 

the sufficiency and necessity of condition (M). 

PROOF OF THEOREM 4. 

t e r m  

at, 

Proving that (1) f f  (2) is easy. This is because each 

k = 1 , 2 , . . . , r -  1; 

jk = m k + l + " ' + m , , " ' , m - k  

after a permutation of the 0, in the product, if necessary, satisfies condition (L), 

modulo lower order terms. As for the lower order terms arising from the 

commutation of the 0,, they too satisfy condition (L) because of Lemma 3.1. 

(2) ~ (3) is also straightforward since condition (L) is sufficient for hyperbolic- 

ity while condition (F) is necessary. 
What remains is to show that (3) ~ (1). Our proof will follow that given by 

Flaschka and Strang in the special case r = 2. 

We will compare the two conditions in a particularly suitable coordinate 

system. In order to accomplish this, we will need some lemmas first presented by 

Flaschka and Strang [2]. We refer the reader to their paper for the proofs. 

LEMMA 6.4. Let r (x, t) be the characteristic for the root )t *(x, t, s r of multiplic- 
ity N of P~, (x, t, ~, z) and suppose D~,q~ (x, t) ~ O. Under the change of variables 

= 

(6.2) x ; =  x,, j _-> 2, 

t ' = t ,  
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an operator P satisfying condition (F) will transform into an operator 

P' = P'(x ', t', Dx,, D,,) = ~ a "(x ', t') D ,a 

in which a" -- 0 if a > m - N. 

LEMMA 6.5. Condition (M) is invariant under the change of coordinates (6.2). 

LEMMA 6.6. Subjected to the transformation (6.2), a characteristic root 

A (x, t, ~) of P goes over into a characteristic root A '(x', t', ~') of P'. The transform 

A *' of the root A * distinguished in Lemma 6.4 has a finite limit 

lim A *(x ', t', ~'), ~ ~ oo; 

for any other root A', the limit 

lim A'(x' '  t ' '  ~') ~:~--. oo 
s~ , 

is finite. 

We now suppose that while 

k Cm-k-j,(x, t, D,  ) = 0, 

k = 1 , . . . , t ~ -  1; 

and 

s 
Cm-~-j~(x,t, Dx)=-O, j~ = 0 , . . - , 1 -  1, 

there does exist a term with 

C~,-~_, (0, 0, G ~ # 0, for some fixed G ~ # 0, 

and some I < m~+l + �9 �9 �9 + m, - 1. 

This violates condition (M). Rotating coordinates, if necessary, we may 

assume that G ~ # 0. In order  to prove that condition (F) is also violated, we need 

only exhibit a characteristic function ~0 for which the associated transformation 

(6.2) yields an operator  P '  which dosen't  have the property required by Lemma 

6.4. Since P,~, = ,,~=~n~-~+l -p-i.1 ~ (see Section 5) we choose q~ to be characteristic for 

the root As, with initial values ~0(x,0)= x .  G ~ The transformation (6.2) then 

C ,~ t x '  changes C~-~-t(x,  t, ~) into =_~_~ , t', ~'), a homogeneous function of ~' 

with the property 

jk=O,'",mk§ 
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(6.4) C'~ - , - ,  (x', 0, ~ ~, 0 , . -  -, 0) = I s~[I '~-~-'C~ _~_, (x, o, ~o) 

which does not vanish for x close to 0. 
Next, A~(x, t, Dx, D,) will transform into an operator with principal symbol 

P 

(6.5) A'~(x ', t', ~', z') = I-I ( z ' -  A, (x ', t', ~'))',, 
i = l  

for t, <r ,  - /~ .  

Thus Cm-~-~(x, t, D,) A~(x, t, D,, D,)  is changed into an operator with m - / c t h  

order symbol 

(6.6) ~'~ " ' c m-~- , tx ,  c ,  ~')a~(x' ,  t', ~', ~-'). 

Near x' = 0, t' = 0, by (6.4), C'~_u_,(x', t', ~'), grows as fast as (~I) m-~-'. As for 
A'~(x', t', ~', z'), since t, is less than r, - / ~  = r - /~ ,  we see, after applying Lemma 

6.6 to (6.5), that A'~ grows as fast as (~)'-". Thus (6.6) grows as fast as 

(~:~)m-~-i+t-,,, where m - k - l + l - t s = m - [ c - t , > m - k - ( r - k ) = m - r .  
This surpasses the growth O ( ~  ~-') permitted by Lemma 6.4. It can be seen 
easily that the m - / ~  th order terms of Hm, as well as the m - k th contribution 

from P'_~, k > /~  (these terms arise since neither l-Ira nor P' -k  need be 
homogeneous)  cannot cancel the influence of term (6.6). (The basic step is seeing 
that the terms l-Ira and P'-k,  k >/~, all have at most the growth O(~Im-').) This 
proves that (3) ~ (1) and completes the proof of Theorem 4. 
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